Researchers at the University of South Florida have discovered a biomarker with potential application in the diagnosis of ovarian cancer.

Ovarian cancer is the 5th most common cancer in women with approximately 23,000 new cases and 14,000 deaths each year in the United States. Although advances in surgery and chemotherapy have improved the survival rate, prognosis depends largely on early detection. Most cases are detected in the late stage of the disease. This is because the disease does not usually produce symptoms until it is advanced and current blood tests are not very sensitive to detect most cases.

Current standard include the use of protein patterns developed via mass spectroscopy. This is exclusively based on the CA-125 test which has major limitations. For instance not all ovarian cancer patients express high levels of this protein. Also, other conditions could lead to an elevation of this protein in some patient. Therefore there is a need for a more dependable biomarker for ovarian cancer.

USF researchers discovered that SnoN/SkiL plays a multiple role in ovarian pathogenesis. For instance, in immortalized normal cell lines (TIOSE) SnoN protein levels were reduced 15 minutes after TGFβ stimulation but levels were elevated in ovarian carcinoma cell lines (OVCA) 3 hours post stimulation. These result confirmed that SnoN/SkiL protein promotes cellular proliferation in ovarian cancer cells and serves as a positive mediator.

ADVANTAGES:
- Sensitive to ovarian cancer
- Promotes early detection

Tech ID # 08B108
Patent #: 8,211,646