Researchers at the University of South Florida have developed a timed walking system and method of use that utilizes an electronic eye light source to increase the accuracy of the common timed 25 foot walk test.

The timed 25 foot walk test is used to assess the gait of a person suffering from a variety of neurological disorders including multiple sclerosis, Parkinson’s disease, amyotrophic lateral sclerosis, ataxia and stroke. In regards to multiple sclerosis measurement, it is the first test used in the Multiple Sclerosis Functional Composite (MSFC) assessment. The test is simply a 25 foot marked runway that the patient is asked to walk as fast as possible, but still safely, to the finish line. The physician overseeing this measures the amount of time it takes for the patient to do this and assigns a score. The problem with the current setup is that it is strictly dependent on human eyes and a crude stopwatch, leading to human error. Therefore, there is a need for a more accurate and consistent method of measuring the timed 25 foot walk.

USF researchers have designed sensors which act as an electronic “eye” and measure when a person passes the “baseline” and “endpoint” of a walk test. This system can be used with any measured walk. The device relies on a laser sensor connected to a computer or digital device. When a patient walks past, the sensor measures the time passed. This will allow for a more accurate and consistent measurement of the timed 25 foot walk while also removing the possibility for human error in the process.

ADVANTAGES:
- More consistent and accurate than a stopwatch
- More accurately measures the timed 25 foot walk
- Removes the possibility of human error

Tech ID # 18B130