Advancing USF Innovation

Therapeutics

Oncology
Drug Delivery
Antimicrobials
Diagnostics
The Technology Transfer Office (TTO) was established in 1990 to facilitate the commercialization of university intellectual property, including patents and copyrights.

The TTO works with researchers and students in every college to ready new inventions for the patenting process and potential licensing opportunities. TTO’s work allows for a sustained focus on transferring cutting-edge research and innovation to the commercial marketplace, generating revenue and diversifying the economy.

Our office has a knowledgeable and professional staff with specialized backgrounds, who work in collaborative teams in the areas of marketing, patent prosecution and licensing to direct the movement of new ideas, discoveries and innovation into the commercial and public sectors. TTO endeavors to educate and promote innovation, the result of which is products, jobs and technologies utilized in the public interest.

USF was ranked in the Top 20 of American Universities for technology transfer by the prestigious Milken Institute. With 116 new utility patents issued in 2017, USF ranks fifth among American public universities and 12th among universities worldwide in generating new U.S. patents, according to the National Academy of Inventors (NAI) and Intellectual Property Owners Association (IPO). In FY 2018, the university had 127 license and option agreements. USF also had 10 new startup companies in FY 2018, and has facilitated the formation of 51 startup companies in the last 5 years. TTO endeavors to educate and promote innovation, the result of which is products, jobs and technologies utilized in the public interest.

[http://www.usf.edu/research-innovation/pl/]
<table>
<thead>
<tr>
<th>Page</th>
<th>Area of Interest</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Anti-Bacterial</td>
</tr>
<tr>
<td>11</td>
<td>Anti-Parasitic</td>
</tr>
<tr>
<td>14</td>
<td>Anti-Viral</td>
</tr>
<tr>
<td>16</td>
<td>General Diagnostics and Biomarkers</td>
</tr>
<tr>
<td>20</td>
<td>Cancer Diagnostics and Biomarkers</td>
</tr>
<tr>
<td>22</td>
<td>Drug Delivery</td>
</tr>
<tr>
<td>28</td>
<td>General Cancer Therapeutics</td>
</tr>
<tr>
<td>37</td>
<td>Immune and Inflammatory</td>
</tr>
<tr>
<td>41</td>
<td>Women’s Health and Oncology</td>
</tr>
</tbody>
</table>
Clostridium Inhibitors

A Natural Clostridium Difficile Treatment Method Isolated from an Antarctic Coral

USF Tech ID# 18B138

Patent Pending

Therapeutic indication: Anti-bacterial

Mechanism of action: Alcyopterosin and Alcyopterosin E

State of Technology: *In vitro*

Technology Description

USF researchers have identified Alcyopterosin and Alcyopterosin E from an undescribed Antarctic deep-sea coral, which are capable of inhibiting *Clostridium difficile* infections at low nanomolar concentrations. These bioactive compounds have exhibited specific inhibition of *Clostridium difficile* bacteria in laboratory settings. Due to their novelty, these compounds have the potential to be developed as new drug candidates, reducing the need to treat this infection with current antibiotics. Alcyopterosin and Alcyopterosin E also exhibited inhibition towards *Leishmania donovani* and HeLa cancer cells.

Strategy to Increase Anti-Viral, Anti-Microbial and Anti-Fungal Defense

SINES with Complementary Sequences for Potential Targeting

USF Tech ID# 18A080

Patent Pending

Therapeutic indication: Anti-viral, anti-microbial and anti-fungal defense

Mechanism of action: Transcribed SINEs with complementary genomes to use in future vaccines

State of Technology: Compositions

Technology Description

Researchers at the University of South Florida have identified a series of novel SINES and antisense SINES which target viral, bacterial and fungi genomes for the degradation and/or inhibition of translation and replication. These SINEs are also able to induce an innate immune response. Furthermore, in vitro transcribed SINEs may be used in future vaccines against viral, microbial, fungal, and parasitic infections.
Novel Bis-Cyclic Guanidines as Potent Membrane-Active Antibacterial Agents with Therapeutic Potential

Small Molecular Antibacterial Agents that Manifest Antibacterial Activity Against Several Resistant Bacterial Strains

USF Tech ID# 17B105
Patent Pending

Therapeutic indication: Anti-bacterial
Mechanism of action: Bis-cyclic guanidines
State of Technology: In vitro

Technology Description

Scientists at USF have designed novel bis-cyclic guanidine compounds that kill bacteria by compromising their cell membranes. Their mechanism of action is analogous to that of HDPs (host-defense peptides). Recently, HDPs have surfaced as an alternative approach to fight bacterial resistance. Furthermore, these compounds exhibited excellent in vivo activity in methicillin-resistant Staphylococcus aureus (MRSA) infected mice. Even after 14 consecutive passages of bis-guanidines, there was no risk of MRSA developing resistance against these compounds.

A Mucosal 2-5 Oligoadenylate Synthetase DNA Vaccine for Respiratory Syncytial Virus

An Intranasal IFN-γ Gene Transfer Therapy that is Effective in the Treatment of Respiratory Syncytial Virus (RSV)

USF Tech ID# 01A046

US Patent Number: 7,354,908; 8,293,717 & 8,802,647

Therapeutic Indication: Treatment of RSV
Mechanism of Action: IFN-γ gene transfer therapy
State of Technology: In vitro

N-Thiolated 2-Oxazolidinones: A New Class of Anti-Bacterial Drug

Highly Potent Antibiotics Against Drug-Resistant Microbes

USF Tech ID# 05A047; 06A017; 06B096; 07B118

US Patent Number: 8,703,963; 7,482,467; 7,332,611; 8,722,937; 9,096,635; 7,846,920 & 8,404,671

Therapeutic Indication: Antibiotic
Mechanism of Action: Beta-lactam antibiotics
State of Technology: In vitro
<table>
<thead>
<tr>
<th>Topic</th>
<th>Therapeutic Indication</th>
<th>Mechanism of Action</th>
<th>State of Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity of New N-Acylated Ciprofloxacin Derivatives
A Novel Method Against Bartonella Henselae and Francisella Tularensis</td>
<td>Antibacterial</td>
<td>Inhibition of DNA gyrase</td>
<td>In vitro</td>
</tr>
<tr>
<td>γ-AApeptides as Novel Antimicrobial Peptidomimetics
Can be Used to Treat Clinically Relevant Strains of Resistant Microbes</td>
<td>Antibacterial, Antimicrobial</td>
<td>Disruption of microbial protein-protein interactions</td>
<td>In vitro</td>
</tr>
<tr>
<td>Inhibitors of CTX-M Beta-Lactamases for New Antibiotic Development
Novel Inhibitor Scaffolds Against CTX-M Beta-Lactamases that May be Used as the Basis for Developing New Antibiotics</td>
<td>Antibiotic development</td>
<td>CTX-M β-lactamases</td>
<td>In vitro</td>
</tr>
<tr>
<td>2,4-Diaminoquinazolines as Anti-Bacterials
Novel Antimicrobials Against Methicillin Resistant Staphylococcus Aureus</td>
<td>Antimicrobial</td>
<td>2, 4 Diaminoquinazoline analogues</td>
<td>Preclinical</td>
</tr>
</tbody>
</table>

Contact us: 3802 Spectrum Blvd., Suite 100 Tampa, FL 33612 - 813.974.0994 patents@research.usf.edu | http://www.research.usf.edu/pl
Anti-Bacterial

Novel Solutions for the Prophylaxis of Catheter-Related Bloodstream Infections

Heparin-Compatible Solution which Prevents and Treats Vascular Catheter-Related Bloodstream Infections

USF Tech ID# 12A057
US Patent Number: 9,125,959

Therapeutic Indication: Vascular catheter-related infections
Mechanism of Action: An alternative alcohol preparation
State of Technology: In vitro

Multi-Action Antibiotic Prodrugs

Novel Antibiotic Compositions

USF Tech ID# 12B156
US Patent Number: 9,339,574

Therapeutic Indication: Bacterial infection
Mechanism of Action: Beta-lactamase inhibitor and antibiotic
State of Technology: In vitro

Novel Antibacterial Agents

Antimicrobial Agents Effective Against ESKAPE Pathogens

USF Tech ID# 14A010
US Patent Number: 9,782,388

Therapeutic Indication: Anti-bacterial
Mechanism of Action: Inducing membrane stress and interfering with DNA repair pathways
State of Technology: Preclinical

Anti-Infecive Agents with Novel Chemical Scaffolds

A Series of New Compounds for the Potential Treatment of Leishmaniasis and ESKAPE Bacterial Pathogens

USF Tech ID# 15A051
US Patent Number: 9,737,509

Therapeutic Indication: Effective against Leishmania donovani and ESKAPE pathogens
Mechanism of Action: Hsp90 inhibitors
State of Technology: In vitro
Prodrug Approach for 4(1H)-Quinolones and Similar Compounds to Improve Oral Bioavailability

Effective Prodrug Approach to Treat Malaria

USF Tech ID# 16A011

Patent Pending

Therapeutic indication: Prodrug approach for Malaria

Mechanism of action: Increases the aqueous solubility of ELQ-300 and other 4(1H)-quinolones

State of Technology: In vivo

New Antimicrobials From an Epigenetics Based Fungal Metabolite Screening Program

Novel Antimicrobials Demonstrating Bioactivity Against L. Donovani Parasite

USF Tech ID# 16A006

Patent Pending

Therapeutic Indication: Antimicrobial bioactivity against L. donovani

Mechanism of Action: Bioactivity of the *Phomopsis* sp. Fungus

State of Technology: In vitro

Phophonate Compounds a Broad-Spectrum Beta-Lactamase Inhibitors

Broad Spectrum Beta-Lactamase Inhibitors

USF Tech ID# 16A006

Patent Pending

Therapeutic Indication: Bacterial Infection

Mechanism of Action: Beta-lactamase inhibitor

State of Technology: In vitro

A Method of Mitigating Drug Resistant Bacteria

A Novel Invention to Mitigate Drug-Resistant Bacteria from Nosocomial Infections in Hospitals and in Food

USF Tech ID# 15A098

Patent Pending

Therapeutic Indication: Anti-microbial

Mechanism of Action: A combination of chitosan and ZnO

State of Technology: In vitro

Minimum Inhibitory Concentration (MIC) Test of synergism of Chitosan and ZnO against multidrug resistant fecal flora and their wild type counterparts.

Processing of Phomopsis sp. to extract antimicrobial compounds

Latent Nucleophile

Activated Nucleophile

low pH

Minimum Inhibitory Concentration (MIC) Test of synergism of Chitosan and ZnO against multidrug resistant fecal flora and their wild type counterparts.

Processing of Phomopsis sp. to extract antimicrobial compounds

Latent Nucleophile

Activated Nucleophile

low pH
A Novel Vaccine Against Invasive Bacteria

The Activity of Bacterial Collagenase has Been Utilized to Develop a Novel Vaccine to Fight Against Streptococci Infection

USF Tech ID# 16A108

Patent Pending

Therapeutic indication: Vaccine
Mechanism of action: Bacterial collagenase activity
State of Technology: *In vitro*

Antimicrobial Activity of N2,N4-Disubstituted Quinazoline-2,4-Diamines towards Acinetobacter baumannii

Novel Quinazoline Compounds Exhibit Strong Antibacterial Activity Against Multi-Drug Resistant A. Baumannii

USF Tech ID# 16B144

Patent Pending

Therapeutic Indication: A treatment against *Acinetobacter baumannii*
Mechanism of Action: Bactericidal Dihydrofolate Reductase Inhibitors
State of Technology: *In vivo*

Migration of *S. mutans* through a section of placental tissue

Tetrazole-Based Scaffolds as Broad-Spectrum Beta-Lactamase Inhibitors

Potent β-Lactamase Inhibitor

USF Tech ID# 16A040

Patent Pending

Therapeutic indication: Bacterial Infection
Mechanism of action: Beta-lactamase inhibitor
State of Technology: *In vitro*

Darwinolide, A Selective Inhibitor of MRSA Biofilms from the Antarctic Sponge Dendrilla Membranosa

Novel Antibiofilm Agents for MRSA Treatment

USF Tech ID# 16A052

Patent Pending

Therapeutic indication: Anti-biofilm-specific antibiotics
Mechanism of action: Inhibits MRSA biofilm
State of technology: *In vitro*
Anti-Bacterial

The Development of Novel Anti-Resistance Agents Targeting the Efflux Pumps of Multi-Drug Resistant Bacterial Pathogens

Novel Inhibitors of Efflux Pumps of Bacterial Pathogens

USF Tech ID# 16B146

Patent Pending

Therapeutic indication: Multidrug resistant bacterial pathogens

Mechanism of action: Efflux Pump Inhibitor

State of Technology: *In vitro*

![Graph showing inhibition of bacterial growth](image)

Multivalent Immunogens Against Clostridium Difficile

Three Multivalent Protein Vaccine Candidates for Clostridium Difficile Infection

USF Tech ID# 17A057

Patent Pending

Therapeutic indication: Vaccine

Mechanism of action: The vaccines target both *C. difficile*’s method of infection and intrinsic toxin

State of Technology: *In vivo*

![Graph showing survival of animals](image)

Non-Toxigenic *Clostridium Difficile* Spores for Use in Oral Vaccination

Effective Against Both Clostridium Difficile Toxins and Colonies

USF Tech ID# 17A102

Patent Pending

Therapeutic indication: *C. difficile* vaccine

Mechanism of action: Non-toxigenic *C. difficile* strains carrying toxin fragments

State of Technology: *In vivo*

![Graph showing percent survival](image)

Antimicrobial Analogue of Gramicidin S

Synthesized Analogue of a Natural Product Gramicidin S

USF Tech ID# 18A083

Patent Pending

Therapeutic indication: Anti-bacterial

Mechanism of action: Gramicidin S analogues against gram positive and negative bacteria

State of Technology: *In vitro*
Leishmania Inhibitors
A Metabolite for the Treatment of Leishmaniasis

USF Tech ID# 18B140
Patent Pending

Therapeutic Indication: *Leishmania donovani* infections
Mechanism of Action: A metabolite derived from an Antarctic marine coral
State of Technology: *In vitro*

Technology Description
USF researchers have identified a novel metabolite derived from an Antarctic marine coral that shows promise as a new treatment option for leishmaniasis infections. Antarctic marine invertebrates are being investigated for their natural chemical protective mechanisms used against predators. This natural product chemistry is ideal for new drug development efforts. The identified metabolite has exhibited specific inhibition of *Leishmania donovani* parasites in laboratory settings. Furthermore, the compound also exhibited inhibition towards *Clostridium difficile* and HeLa cancer cells.

Transfection Vector for Pathogenic Amoebae and Use Thereof
A Novel Genetic Tool to Discover Drug Targets

USF Tech ID# 17A009
Patent Pending

Therapeutic Indication: Vector for transfection
Mechanism of Action: Electroporation system as reverse genetic approach to unveil novel drug targets and virulence factors in amoebae
State of Technology: *In vitro*

Technology Description
Researchers at the University of South Florida have developed a transfection vector as a novel genetic tool for a reverse genetic approach to unveil virulence factors and potential drug targets within these microbes. Identification of three independent selectable markers, hygromycin, puromycin and bleomycin for *N. fowleri* would allow for multiple transfection rounds with different genes. Especially, after the protozoan parasite was found to have natural resistance to neomycin. Transfection of amoeba has been difficult and this innovative technology would be a solution.
Piperazino-Substituted 4(1H)-Quinolones Targeting Erythrocytic and Exoerythrocytic Stages of Malaria
Optimized 4(1H)-Quinolones for Treatment of Malaria

USF Tech ID# 16A012
Patent Pending

Therapeutic Indication: Malaria
Mechanism of Action: Effective treatment that targets erythrocytic and exoerythrocytic stages of malaria
State of Technology: In vivo

Technology Description
Researchers at the University of South Florida have discovered an effective treatment that targets erythrocytic and exoerythrocytic stages of malaria. Resistance to current treatments is a mounting problem and the WHO states that without new therapeutics, all the strides made in reducing the deaths from the disease could be reversed owing to resistance of parasite strains to many of the common treatments.

Researchers have begun to optimize old antimalarial agents or drugs to find a solution to this issue. Adhering to this strategy, USF researchers have optimized a series of antimalarial piperazine-substituted 4(1H)-quinolones. The optimization invention increases the solubility and bioactivity of the compounds making them highly efficacious against erythrocytic and exoerythrocytic stages of malaria.

Design and Immunogenicity of a Novel Synthetic Antigen of the Plasmodium
A Novel Synthetic Vaccine for Malaria

USF Tech ID# 11B116
US Patent Number: 8,784,832; 9,120,869

Therapeutic Indication: Malaria
Mechanism of Action: Elicits an immune response directed against the blood stage of malarial parasite Plasmodium vivax
State of Technology: Preclinical

4(1H)-Quinolones Having Anti-Malarial Activity with Reduced Chemical Resistance
Novel Compound Having Antimalarial Activity for Treatment and Prevention of the Disease

USF Tech ID# 11B171
US Patent Number: 8,877,752

Therapeutic Indication: Malaria
Mechanism of Action: Effective inhibition/elimination of at least one of the stages of the malarial lifecycle
State of Technology: Preclinical
Inhibitors of Oxidase Virulence Factor Protect Against Pathogenic Amoebas
Inhibitors of Nfa-1 Protein for the Treatment and Prevention of Amoebic Infections

USF Tech ID# 14A014
US Patent Number: 9,492,455; 9,655,901

Therapeutic indication: Amoebic infections
Mechanism of action: Inhibits Nfa-1 protein found in pathogenic amoeba and _nigleria fowleri_
State of Technology: _In vitro_

Treatment For the Disease Visceral Leishmaniasis
Novel Compounds Isolated from Antarctic Sponge Display Bioactivity Against Leishmania Donovani

USF Tech ID# 14B109
Patent Pending

Therapeutic indication: Visceral Leishmaniasis
Mechanism of action: Selective inhibitors of _L. donovani_
State of Technology: _In vitro_

Next Generation Plasmodium Vivax Vaccine
Synthetic Antigen-Based Vaccine for Malaria

USF Tech ID# 15B166
Patent Pending

Therapeutic indication: Malaria
Mechanism of action: Elicits a broadly neutralizing immune response based on the ligand domain of _Plasmodium vivax_
State of Technology: _In vivo_

Epigenetic Modification of Fungi and Uses Thereof
Anti-Leishmanial Dinorsestertepene from a Mangrove Endophytic Fungus

USF Tech ID# 18B137
Patent Pending

Therapeutic indication: _Leishmania donovani_ infections
Mechanism of Action: A dinorsestertepene isolated from an endophytic fungus of a mangrove plant
State of Technology: _In vitro_
Methods for Prevention and Treatment of Respiratory Syncytial Virus (RSV) Infection

Targeting Specific RSV Genes with siRNA to Suppress RSV Replication

USF Tech ID# 97B046, 03B105
US Patent Number: 9,089,590

Therapeutic indication: RSV infection
Mechanism of action: Suppresses RSV gene replication
State of Technology: In vitro

Delta-9 Tetrahydrocannabinol as an Inhibitor of Herpes Viruses

Method of Treating Gamma Oncogenic Herpes Viruses

USF Tech ID# 04B089
US Patent Number: 8,697,095

Therapeutic Indication: Herpes virus infection
Mechanism of Action: Inhibitor of gamma herpes virus replication
State of Technology: In vitro

Effective Therapeutics Against Viral Infections

Novel Stereospecific, Heterocyclic Compounds for Influenza

USF Tech ID# 07B120
US Patent Number: 8,318,804

Therapeutic indication: RSV infection
Mechanism of Action: Effectively treats cells infected by single-stranded RNA viruses
State of Technology: In vitro

Method for Synthesis of Effective Therapeutics Against Viral Infections

Novel Nitro-ester Compounds with Potent Anti-Viral Activity

USF Tech ID# 07B121
US Patent Number: 8,236,853

Therapeutic indication: RSV infection
Mechanism of Action: Contacting the cell having RSV infection with the novel compound effectively treated the cell
State of Technology: In vitro

Co-localization of RSV and ICAM-1 on epithelial cell surface

10 µg/mL THC 5 µg/mL THC 2.5 µg/mL THC

1.5 µg/mL THC 0.6 µg/mL THC DMSO solvent

No Treatment 7.5 µg/ml No Virus 15µg/ml

Virus Only 7.5 µg/ml 7.5 µg/ml

R3

H

SO2Ph

H

Ph

Contact us: 3802 Spectrum Blvd., Suite 100 Tampa, FL 33612 - 813.974.0994 patents@research.usf.edu | http://www.research.usf.edu/pl
Peptide for the Treatment of Respiratory Syncytial Virus Infection
Novel Micellar Nanoparticles with Inhibitor Peptides

USF Tech ID# 12B111
US Patent Number: 9,556,236

- **Therapeutic indication:** RSV Infection
- **Mechanism of action:** Binding HR2 domain of RSV fusion protein
- **State of technology:** *In vivo*

Improved Immunogenicity for Attenuated Respiratory Syncytial Virus Vaccines
RSV Vaccines with Improved Immunogenicity

USF Tech ID# 14B139
Patent Pending

- **Therapeutic Indication:** RSV infection
- **Mechanism of Action:** Increasing levels of type I and type III interferons
- **State of Technology:** *In vivo*

Antigenome Clone of Respiratory Syncytial Virus Subgroup B
Simple, Rapid Assay Test to Investigate Antiviral Therapies

USF Tech ID# 14B141
Patent Pending

- **Therapeutic Indication:** RSV diagnostic
- **Mechanism of Action:** Antigenome cDNA for use in RSV reverse genetics to rapidly identify vaccinated individuals
- **State of Technology:** *In vitro*

A Method of Preventing and Treating HIV
siRNAs for Protection Against HIV-1 Infection

USF Tech ID# 16A102
Patent Pending

- **Therapeutic Indication:** HIV infection
- **Mechanism of Action:** Gene silencing, using vector-driven expression of siRNAs
- **State of Technology:** *In vivo*
GAS5 IncRNA Biomarker Signature for Prediction and Management of Diabetes
Biomarker for Early Detection/Diagnosis of Pre-Diabetes and Diabetes Management

USF Tech ID# 14B152
Patent Pending

Therapeutic Indication: Early diabetes detection
Mechanism of Action: GAS5: A RNA-based biofluid marker
State of Technology: In vitro

Technology Description
Researchers at the University of South Florida have identified GAS5, an RNA-based biofluid marker for prediction and management of diabetes. GAS5 is a long non-coding RNA that has been found to have markedly reduced levels in serum from diabetic patients. Testing has demonstrated that GAS5 directly affects multiple insulin-responsive genes related to glucose metabolism and uptake. This study also establishes GAS5 as a circulating biomarker in blood, saliva and urine for early detection and diagnosis of pre-diabetes, and in diabetes control. The invention is non-invasive and can be efficiently incorporated into standard care for diabetes.

Gold Nanowires Based Microfluid Device for the Detection of Blood Analytes and Disease Biomarkers
Ultra-Sensitive Detection of Analytes for Efficient Clinical Analysis

USF Tech ID# 06A062
US Patent Number: 8,349,604

Therapeutic Indication: A microfluidic sensing device
Mechanism of Action: Ultra-sensitive detection of analytes such as cortisol and other biomarkers
State of Technology: Prototype

Simultaneous Sample Manipulation and Sensing Using Surface Acoustic Waves
Biomarker Detection for Diseases Using SAWs

USF Tech ID# 07A008
US Patent Number: 7,878,063

Therapeutic Indication: Biomarker detection
Mechanism of Action: Removes nonspecifically bound proteins from the surface of biosensors
State of Technology: Prototype
Identification of DNA Segment Involved in Chromosome Rearrangements
A New Web Based Tool for Biomedical Researchers

USF Tech ID# 08A032
US Patent Number: 8,352,194

Therapeutic Indication: Cancer diagnostics and treatments

Mechanism of Action: Statistical analysis and associated algorithm

State of Technology: In vitro

PKC II Specific Polyclonal Antibody
Specific Antibodies to Two Isoforms of Protein Kinase C Delta (PKCδ)

USF Tech ID# 08B088
Patent Pending

Therapeutic Indication: Neurogenesis and cancer

Mechanism of Action: Antibodies for PKCδ II

State of Technology: In vitro
Human Protein Kinase C Delta VIII Isoform as a Biomarker in Neurodegenerative Diseases Such as Alzheimer’s Disease and in Neuronal Cancers

PKCδVIII Expression is an Indicator of the Levels of On-Going Apoptosis in Neurons

USF Tech ID# 09B136
Patent Pending

Therapeutic Indication: Alzheimer’s disease and neuronal cancer detection

Mechanism of Action: Protein Kinase C (PKC) δVIII

State of Technology: *In vivo*

A Method of Profiling MicroRNAs

A Novel microRNA (miRNA) Quantification Method to Profile the Expression Levels of miRNAs Using an Universal Probe and an Universal RT-Primer (UPR)

USF Tech ID# 10A016
US Patent Number: 9,493,825

Therapeutic Indication: RNA detection

Mechanism of Action: A universal probe and RT-primer

State of Technology: *In vitro*

Using Human Herpesvirus 6 for Cloning and Sequencing Subtelomere Sequences of Mammalian Genomes

Potential for Designing Strategies for Intervening in Certain Diseases

USF Tech ID# 10A026
Patent Pending

Therapeutic Indication: Cloning and sequencing chromosomes

Mechanism of Action: *Human herpes virus 6* (HHV-6)

State of Technology: *In vitro*

Novel PCR Target for the Detection of Salmonella Species: Outer Membrane Porin F (ompF)

Highly Specific and Sensitive Outer Membrane Porin F Gene as a PCR Target for Salmonella Detection

USF Tech ID# 10A076
US Patent Number: 8,895,248 & 9,410,212

Therapeutic Indication: Detection of Salmonella species

Mechanism of Action: Real time PCR

State of Technology: *In vitro*
Salivary Biomarkers Associated with Glycemic Control and Oral Health

Increased Salivary Inflammation Burden is Associated with Decreased Glycemic Control and Oral Health

USF Tech ID# 13B141
US Patent Number: 9,753,041

Therapeutic Indication: Glucose screening methods
Mechanism of Action: Saliva analysis
State of Technology: Clinical samples

Niobia-Based Sorbents and Methods for Phosphopeptide Enrichment, and Synthesis of the Same

A High Sensitivity Method to Extract and Enrich Phosphorylated Peptides from Phosphoproteins

USF Tech ID# 17A099
Patent Pending

Therapeutic Indication: Early disease detection
Mechanism of Action: Phosphorylated peptides obtained from phosphoproteins
State of Technology: Laboratory tested
Identification of Bif-1/Endophilin B1 as a Cancer Diagnostic Marker
Increased Bif-1 Protein Expression in High-Grade Prostatic Intraepithelial Neoplasia (PIN) in a Subset of Prostate Cancer

USF Tech ID# 07B105
US Patent Number: 8,309,311
Therapeutic indication: Early state prostate cancer detection
Mechanism of action: Bif-1 expression
State of Technology: *In vivo*

Micro-RNA Profiles Associated with Endometrial Cancer Development and Response to Cisplatin and Doxorubicin Chemotherapy
A Method for Predicting Chemoresponse of a Population of Cancer Cells

USF Tech ID# 07A028
US Patent Number: 8,257,919
Therapeutic indication: Chemotherapeutics
Mechanism of action: miRNA expression profile comparisons
State of Technology: *In vitro*

Lysophosphatidylcholine Testing for Ovarian Cancer Recurrence
A Diagnostic and Screening Method to Identify Ovarian Cancer and Classification of the Early Stage

USF Tech ID# 03A035
US Patent Number: 7,964,408
Therapeutic Indication: Early stage ovarian cancer identification
Mechanism of Action: Lysophospholipids as biomarkers
State of Technology: Clinical samples

PKC-iota as a Predictor of Prostate Carcinogenesis
Methods for Detecting and Treating Prostate Tumorigenesis and Neuroblastoma with use of Protein Kinase C-iota (PKC-i)

USF Tech ID# 07B111
US Patent Number: 9,078,915
Therapeutic indication: Prostate and neuroblastoma treatment
Mechanism of action: Measurement of PKC-i levels with Western Blot
State of Technology: Clinical samples
FFPE-Based Genomic Signatures that Predict Ovarian Cancer Chemotherapy Response
A Novel Genetic Screening Process to Identify Genes that Contribute to Chemotherapeutic Responsiveness in Ovarian Cancer

USF Tech ID# 07B149
US Patent Number: 8,603,758

Therapeutic indication: Ovarian cancer
Mechanism of action: Genetic screening process
State of Technology: In vitro

Detection of Ovarian Cancer by Elevated Urinary Levels of RHAMM
Detects Ovarian Cancer in Early and Late Stages

USF Tech ID# 16A034

Therapeutic indication: Ovarian cancer detection
Mechanism of action: Urinary RHAMM levels
State of Technology: Clinical samples

Natriuretic Peptide Receptor as a Biomarker for Cancer
NPRA Can be Considered as a Progression Marker for Breast and Prostate Cancer

USF Tech ID# 10A015
Patent Pending

Therapeutic indication: Breast and prostate cancer detection
Mechanism of action: Natriuretic peptide receptor A
State of Technology: In vitro

Detection of Ovarian Cancer by Elevated Urinary Levels of RHAMM
Detects Ovarian Cancer in Early and Late Stages

USF Tech ID# 16A034

Therapeutic indication: Ovarian cancer detection
Mechanism of action: Urinary RHAMM levels
State of Technology: Clinical samples

LIN28B as Biomarker Propranolol Sensitive Tumors
A Newly Identified Mechanism by which Propranolol Induces Infantile Hemangioma Involution

USF Tech ID# 17B156
Patent Pending

Therapeutic indication: Infantile hemangioma treatment
Mechanism of action: Modulation of LIN28B/Let-7 signaling by propranolol
State of Technology: In vitro
New Drug Delivery System: Niosomes Encapsulating Drugs in a Hydrogel
For Optimal Drug Bioavailability

USF Tech ID# _06A010
Patent Pending

Therapeutic Indication: Drug delivery matrix
Mechanism of Action: Surfactant vesicles
State of Technology: In vitro

Technology Description
Researchers at the University of South Florida have designed a functionalized polyamidoamine PAMAM dendrimer for the effective delivery of ShRNA-encoding DNA in combination with pioglitazone encapsulated cyclodextrin. The delivery method is noninvasive topical approach, which is known to be the easiest way to deliver therapeutics to the eye. The PAMAM dendrimer was selected for its good physicochemical properties and its ability to facilitate endosomal escape through its internal secondary and tertiary amines the so called "proton sponge" effect.

Method of Delivering Genes and Drugs to a Posterior Segment of an Eye
Nanoformulations to Deliver Drugs and Genes to the Posterior Eye

USF Tech ID# _18B149
Patent Pending

Therapeutic Indication: Nanoformulations for optic drug delivery
Mechanism of Action: Effective and non-invasive topical administration
State of Technology: In vivo

Reverse Cholesterol Transport with Modified Nanoparticles

Materials and Methods to Reduce LDL Cholesterol
Functionalized Magnetic Nanoparticles with an Enzyme and an LDL Antibody

USF Tech ID# _06A043, _06B094
US Patent Number: 7,892,553

Therapeutic Indication: High cholesterol
Mechanism of Action: LDL conjugated nanoparticles that bind with LDL cholesterol
State of Technology: In vivo

Contact us: 3802 Spectrum Blvd., Suite 100 Tampa, FL 33612 - 813.974.0994 patents@research.usf.edu | http://www.research.usf.edu/pl
Nanoparticles to Enhance Antibiotic Delivery and Performance
Polyacrylate Nanoparticles for The Delivery of Antibiotics

USF Tech ID# 06A053
US Patent Number: 8,110,678; 8,470,958; 8,414,926

Therapeutic Indication: Encapsulation of antibiotics

Mechanism of Action: Microemulsion polymerization as a means to easily prepare aqueous solutions

State of Technology: Compositions

Targeted Drug Delivery to Lungs
Sertoli Cells as Carriers of Anti-Cancer Drugs

USF Tech ID# 08A011
US Patent Number: 9,161,901

Therapeutic Indication: Encapsulation of anticancer medicine

Mechanism of Action: Sertoli cells have the ability to self-immunoprotect, thus can be introduced intravenously to the host without rejection

State of Technology: In vivo

Liposomal Nanoparticle Encapsulation Improves Bioavailability of Epigallocatechin-3-Gallate (EGCG)
Improving the Bioavailability of EGCG for Alzheimer’s and HIV-Associated Dementia

USF Tech ID# 09A045
US Patent Number: 8,906,414

Therapeutic Indication: Alzheimer’s Disease and HIV-associated dementia

Mechanism of Action: EGCG effectively modulates amyloid precursor protein

State of Technology: In vivo

Poly (Vinyl Benzoate) Nanoparticles for Molecular Delivery
Biodegradable Nanoparticles as Molecular Carriers

USF Tech ID# 10B116
Patent Pending

Therapeutic Indication: Molecular delivery of antibiotics

Mechanism of Action: Pluronic F68

State of Technology: In vitro
Graphene Hydrogel Matrix for the Differentiation of Mesenchymal Stem Cells

Biocompatible Three-Dimensional Matrix

USF Tech ID# 12A022

US Patent Number: 9,433,682; 9,434,926

Therapeutic Indication: Matrix for monitoring stem cell viability

Mechanism of Action: Stem cells differentiate into chondrocytes, osteocytes and adipocytes on hydrogels

State of Technology: In vivo

Manganese Oxide-Coated Nanoparticles for Delivery of Genes and siRNA into Brain

Nasal Drug Delivery Directly to the Brain

USF Tech ID# 11A020

US Patent Number: 9,375,400

Therapeutic Indication: Delivery of therapeutic genes to the CNS

Mechanism of Action: Mn oxide-coated nanoparticle utilizes the capacity of manganese to be taken up by nerve terminals

State of Technology: In vivo

Manganese Oxide Lipid Nanoparticles for Use as a T1 MRI Contrast Agent and Gene Delivery Agent

Novel Theranostics for Lung Disease

USF Tech ID# 12A024

Patent Pending

Therapeutic Indication: Lung cancer

Mechanism of Action: Manganese oxide lipid nanoparticles

State of Technology: In vitro

Multilayered Multimodal Magnetic Micelles Nanoparticles (4M-NPs) for MRI and Gene Delivery

Theranostics Approach to Treat Diseases

USF Tech ID# 11B152

US Patent Number: 9,439,978

Therapeutic Indication: Cancer-tumor cells

Mechanism of Action: Super paramagnetic iron oxide nanoparticles

State of Technology: In vitro

TEM images showing uptake and intracellular distribution of 4M-NPs:DNA.

AVG SWELLING RATIO

TIME (hour)

Mn Oxide Coated nanoparticles for the delivery of genes and siRNA into the brain by nasal insufflation.

Graphene Hydrogel Matrix for the Differentiation of Mesenchymal Stem Cells

Biocompatible Three-Dimensional Matrix

USF Tech ID# 12A022

US Patent Number: 9,433,682; 9,434,926

Therapeutic Indication: Delivery of therapeutic genes to the CNS

Mechanism of Action: Mn oxide-coated nanoparticle utilizes the capacity of manganese to be taken up by nerve terminals

State of Technology: In vivo

Manganese Oxide-Coated Nanoparticles for Delivery of Genes and siRNA into Brain

Nasal Drug Delivery Directly to the Brain

USF Tech ID# 11A020

US Patent Number: 9,375,400

Therapeutic Indication: Delivery of therapeutic genes to the CNS

Mechanism of Action: Mn oxide-coated nanoparticle utilizes the capacity of manganese to be taken up by nerve terminals

State of Technology: In vivo

Manganese Oxide Lipid Nanoparticles for Use as a T1 MRI Contrast Agent and Gene Delivery Agent

Novel Theranostics for Lung Disease

USF Tech ID# 12A024

Patent Pending

Therapeutic Indication: Lung cancer

Mechanism of Action: Manganese oxide lipid nanoparticles

State of Technology: In vitro

Contact us: 3802 Spectrum Blvd., Suite 100 Tampa, FL 33612 - 813.974.0994 patents@research.usf.edu | http://www.research.usf.edu/pl
Graphene Based Theranostics for Tumor Targeted Drug/Gene Delivery and Imaging
Multifunctional System for the Treatment and Diagnosis of Cancer

USF Tech ID# 13A032
US Patent Number: 9,675,714

Therapeutic Indication: Cancer tumor cells
Mechanism of Action: Imaging and treatment with graphene nanoparticles
State of Technology: In vitro

A Platform for Selective Intracellular Delivery by the Growth Factor Mediated Macropinocytosis Pathway
Flexible and Selective Intracellular Delivery

USF Tech ID# 13B158
US Patent Number: 9,616,138

Therapeutic Indication: Delivery of therapeutic proteins and genes
Mechanism of Action: Selective targeting of receptors that are overexpressed in tumors
State of Technology: In vitro

Controllable Drug Internalization by Self-Assembly of Estrogen Anchored Cyclodextrin Supramolecule in the Delivery of Doxorubicin Prodrug into Breast Cancer Cells
Can be Used as an Effective Drug Delivery System that has a Higher Targeting Efficiency

USF Tech ID# 14A001
Patent Pending

Therapeutic Indication: Breast cancer therapeutic
Mechanism of Action: Cyclodextrin vectors with functionalized estrogens and doxorubicin prodrug
State of Technology: In vitro

Enhanced Targeted Drug Delivery System Via Chitosan Hydrogel and Chlorotoxin
A Drug Delivery System that Allows the Tumor-Targeting Drug Chlorotoxin to be Entrapped Internally

USF Tech ID# 14A034
US Patent Number: 9,522,114

Therapeutic Indication: Cancer treatment
Mechanism of Action: Nanoparticle vesicles embedded in a chitosan hydrogel
State of Technology: In vitro

Greater specific interaction between hydrogel (green) and ovarian carcinoma (OV2008) was exhibited compared to normal ovarian cells (MCC).
Menthol-Based Nanoparticles for Drug Delivery
Chiral Drug Delivery Vehicles

USF Tech ID# 14A062
US Patent Number: 9,533,051

Therapeutic Indication: Drug delivery against infections
Mechanism of Action: Menthol-based polyacrylate nanoparticles
State of Technology: *In vitro*

Novel MKT-077 Nanoparticles for Treatment of Alzheimer’s Disease, Neurodegenerative Diseases, and Cancer
Nanoparticles that can Overcome the Renal Toxicity and BBB Transport Issues Associated with Drug Delivery to the Brain

USF Tech ID# 14B120
Patent Pending

Therapeutic Indication: Neurodegenerative disease and cancer treatment
Mechanism of Action: MKT-077 nanoparticles that can transport a drug through the BBB
State of Technology: *In vitro*

Afobazole Nanoparticles Formulation for Enhanced Therapeutics
A Novel Nanoparticle Formulation of the Drug Afobazole with Blood Brain Barrier Permeability

USF Tech ID# 14B134
Patent Pending

Therapeutic Indication: Diseases of the CNS
Mechanism of Action: A nanoparticle carrier encapsulating afobazole
State of Technology: *In vitro*

Triamcinolone Acetonide Nanoparticles in Thermoreversible Gels for Enhanced Therapeutics
A Novel Treatment for Age-Related Macular Degeneration

USF Tech ID# 15A101
Patent Pending

Therapeutic Indication: Age related macular degeneration treatment
Mechanism of Action: A loteprednol etabonate-encapsulated PEGylated PLGA nanoparticle based drug delivery system
State of Technology: *In vitro*
Ciprofloxacin-Based Polyacrylate Nanoparticle Emulsions for Antibiotic Applications
Drug Delivery and Protection of Antibiotic Agents from Enzymatic and Chemical Degradation

USF Tech ID# 17B159
Patent Pending

Therapeutic Indication: Antibiotic applications

Mechanism of Action: A bioactive antibacterial homopolymer

State of Technology: *In vitro*

Evaluation of VEGF and HIF Suppression of a Thermoreversible Gel Containing Aflibercept and Doxorubicin
A Dual Drug Delivery System

USF Tech ID# 17A031
Patent Pending

Therapeutic Indication: Treatment of posterior segment ocular diseases

Mechanism of Action: Anti-HIF agent doxorubicin and the anti-VEGF agent Aflibercept

State of Technology: *In vitro*

Formulation and Characterization of a Nano-particle Drug Delivery System Containing Digoxin and Corticosteroids
A Dual Drug Delivery System

USF Tech ID# 17A036
Patent Pending

Therapeutic Indication: Treatment of posterior segment ocular diseases

Mechanism of Action: Anti-HIF agent digoxin and corticosteroid Triamcinolone Acetonide

State of Technology: *In vitro*

Nanoparticle Delivery System for Diseases Associated with Major Basement Membrane Components of Blood Vessels Accessible from the Blood Stream
Perfluorocarbon Nanoparticles for Drug Delivery and Early Detection Methods

USF Tech ID# 18A112
Patent Pending

Therapeutic Indication: Drug-delivery system that targets the basement membrane

Mechanism of Action: Perfluorocarbon nanoparticles

State of Technology: *In vivo*
LRBA in Colorectal Cancer and Crohn’s Disease
Simple Blood Test Using PBMCs

USF Tech ID# 01A016
US Patent Number: 7,704,963; 8,440,395
Assay Type: mRNA or protein
Data Available: Clinical samples

Polyphenol Proteasome Inhibitors, Synthesis, and Methods of Use
Multiple Compositions and Methods Covered Including EGCG

USF Tech ID# 03A003
US Patent Number: 7,767,711; 8,058,310; 8,563,607; 9,399,631; 7,358,383
Therapeutic Indication: Breast cancer
Mechanism of Action: Inhibition of proteasomal chymotrypsin activity
State of Technology: Compositions

Compositions: Peptidomimetic Inhibitors of STAT Activity for Cancer Therapy
Small Molecule Stat3 Inhibitor Induces Tumor-Specific Cell Death

USF Tech ID# 03A014
US Patent Number: 7,342,095; 7,842,671
Therapeutic Indication: Breast and lung cancer
Mechanism of Action: Target tumor cells and Inhibit Stat3 activity
State of Technology: In vitro modeling

Compositions: Platinum Complexes for Inhibiting Tumor Cell Proliferation
STAT3 Signaling in Malignant Cells is Inhibited, Causing Apoptosis, While Cells with No Evidence of Active STAT3 are Little Affected

USF Tech ID# 03A027
US Patent# Number: 7,977,381; 8,455,543
Therapeutic Indication: Wide variety of cancers
Mechanism of Action: Identifies STAT3 activity causing apoptosis
State of Technology: In vivo modeling
Methods of Treatment Using LAQ824 and PKC412
Synergistic Combination

USF Tech ID# 03B062
Therapeutic Indication: Acute myeloid leukemia
Mechanism of Action: Histone deacetylase inhibitors
State of Technology: Clinical data

Platinum Complexes as Novel Stat3 Inhibitor
Anti-Tumor Effects through Inhibition of Stat3 Signaling, Biological Activity, and Immune-Modulatory Function

USF Tech ID# 03B065
US Patent Number: 7,238,372; 7,763,585; 8,598,230
Therapeutic Indication: Cancer treatment
Mechanism of Action: Platinum compounds ISSCPA-1 and ISSCPA-7
State of Technology: In vivo

Platinum Complexes and Methods for Cancer Treatment
New Platinum Complexes with Cancer Specific Activity

USF Tech ID# 03B100
US Patent Number: 7,759,510; 8,247,445; 7,566,798
Therapeutic Indication: Cancer treatment
Mechanism of Action: Platinum IV complex
State of Technology: In vivo

Compositions: Palmerolide A Cytotoxic Macrolides
Structural Recognition of STAT SH2 Domains

USF Tech ID# 04A002
US Patent Number: 7,625,885; 8,669,376; 9,394,270
Therapeutic Indication: Melanoma
Mechanism of Action: Inhibition of V-ATPase at nm concentrations
State of Technology: In vitro
Methods of Treatment: with Cyclic GMP
Effectively Inhibits Human Cancer Growth in Athymic Mice

USF Tech ID# 04B068
US Patent Number: 8,759,317
Therapeutic Indication: Pancreatic, breast, prostate, lung
Mechanism of Action: Interferes with DNA synthesis
State of Technology: *In vitro and in vivo mouse data*

Methods of Treatment with Dendroaspsis Natriuretic Peptide
Treats Aggressive Cancer w/o Chemotherapeutic Side Effects

USF Tech ID# 06B082
US Patent Number: 7,825,092
Therapeutic Indication: Solid malignancies including glioblastoma
Mechanism of Action: Interferes with DNA synthesis-isolated from the venom of the Green Mamba snake
State of Technology: *In vitro and in vivo mouse data*

Prostate Cancer Therapy and Sensitivity Prediction
Cyclin-Dependent Kinase Inhibitors (CDKI) Induce Apoptosis of Prostate Cancer Cells

USF Tech ID# 04B114
US Patent Number: 9,063,142; 8,716,299
Therapeutic Indication: Prostate cancer
Mechanism of Action: Targets cancer cells by mediating P53 and XIAP proteins
State of Technology: *In vitro*

SH2 STAT3/STAT1 Peptidomimetics as Novel Anticancer Drugs
Comprehensive Series of Phosphopeptidomimetic Probes that Display Selective Inhibition of Specific STAT Isoform Homodimerization

USF Tech ID# 06B135
US Patent Number: 8,153,596
Therapeutic Indication: All cancer types
Mechanism of Action: Disruption of STAT proteins
State of Technology: *Compositions*
Substrate Mimetic Inhibitors of Akt as Anticancer Drugs
Oncogenic Prevention and Treatment Using Substrate Inhibitors to Block the Effects of the Akt Protein

USF Tech ID# 06B137
US Patent Number: 8,822,524; 9,453,049

Therapeutic Indication: All cancer types
Mechanism of Action: Akt Protein Inhibition
State of Technology: Compositions

Method of Activating Natural Killer Cells
Mediation of NK Cells by Administering Broad Acting Phosphatase Inhibitor

USF Tech ID# 07A042
US Patent Number: 8,399,510

Therapeutic indication: All cancer types
Mechanism of action: Trigger tumor cell lysis by delivering a sufficient signal to NK cells in the form of sodium orthovanadate, SHP specific inhibitor
State of Technology: In vitro

Methods of Treatment: Novel Therapeutic Target
Targets Protein Kinase C iota in Cancer

USF Tech ID# 07B094
US Patent Number: 8,461,192; 8,716,266

Therapeutic Indication: Neuroblastoma, glioma, breast cancer
Mechanism of Action: Blocks catalytic activity of protein kinase C-iota
State of Technology: Clinical samples

Compositions: Modulating Bcl-2 Proteins
Tumor Selective Apoptosis Inducing Agents

USF Tech ID# 08A013
US Patent Number: 8,524,947

Therapeutic Indication: Multiple cancer types
Mechanism of Action: Specifically targets Bcl-xL and triggers apoptosis
State of Technology: In vitro modeling
Methods of Treatment with Tipifarnib

Evokes ER Stress

USF Tech ID# 08B089

US Patent Number: 8,362,033

Therapeutic Indication: All cancer types

Mechanism of Action: Stimulates calcium channel Orai3

State of Technology: *In vitro modeling*

Proteasome Inhibitors Having Chymotrypsin-Like Activity

Novel Proteasome Inhibitors for Cancer Therapy

USF Tech ID# 09A033

US Patent# Number: 8,466,157

Therapeutic Indication: All cancer types

Mechanism of Action: Selective apoptosis of malignant cells

State of Technology: *In vitro*

PKC-iota: A Method to Predict Neuroblasotma Carcinogenesis

Differentiates Between Benign and Cancerous Lesions and Treatment of Prostate Tumor

USF Tech ID# 09B141

Patent Pending

Assay Type: Protein, Western blot

Data Available: *Clinical samples*

Compositions: Plastic Antibody for Atrial Natriuretic Peptide

High Affinity and Selectivity to ANP

USF Tech ID# 11A027

Patent Pending

Therapeutic Indication: Solid malignancies including metastatic disease

Mechanism of Action: Attenuate NPRA binding to endogenous ANP

State of Technology: *In vitro data*
Effective Treatment of Esophageal Adenocarcinoma Using Triciribine and Related Compounds
A Novel Formulation of Triciribine and Related Compounds with Reduced Toxicity

USF Tech ID# 11A069
US Patent Number: 9,150,604

Therapeutic Indication: Esophageal adenocarcinoma
Mechanism of Action: Triciribine and triciribine phosphate cause regression of the esophageal adenocarcinoma
State of Technology: In vivo

A Novel PKC-iota Inhibitor for the Treatment of Glioma
Effective Anti-Tumor Therapy that Inhibits Multiple Targets

USF Tech ID# 11B123
US Patent Number: 8,716,266

Therapeutic Indication: Cancer; Glioma tumors
Mechanism of Action: PKC-iota inhibitor
State of Technology: Clinical Samples

RGD Mimetic γ-AA Peptides and Methods of Use
Y-AA Peptides for the Diagnosis and Treatment

USF Tech ID# 12A016
US Patent Number: 9,234,007

Therapeutic Indication: Cancer
Mechanism of Action: Binds integrin αvβ3
State of Technology: In vivo modeling

Novel Therapeutic for Cancer Detection and Treatment
Graphene Quantum Dot Nanoparticles as Anti-Cancer Drug Carriers and Imaging Agents

USF Tech ID# 14A052
Patent Pending

Therapeutic Indication: All cancer types
Mechanism of Action: Quantum dot nanoparticles carry anti-cancer drugs to the target site and enable real-time imaging and detection of small tumors
State of Technology: In vitro
Method for Treating Prostate Cancer
Protein Kinase C Inhibitors, ACPD and ICA-1, for Prostate Cancer

USF Tech ID# 15A067
Patent Pending

Therapeutic Indication: Prostate cancer
Mechanism of Action: Inhibits PKC-ι and PKC-ζ which are heavily expressed in prostate cancer cells and mediate apoptosis
State of Technology: *In vitro*

Protein Acyl Transferase Inhibitor
Novel Protein Palmitoyltransferases for the Treatment of Various Cancers

USF Tech ID# 15B115
Patent Pending

Therapeutic Indication: All cancer types
Mechanism of Action: Inhibition of protein palmitoyltransferases that modify Ras oncogene protein
State of Technology: *In vitro*

Combinatorial Therapies for Pancreatic Cancer Treatment
Combinatorial Cancer Treatment with Fendiline and Tivantinib

USF Tech ID# 16A022
Patent Pending

Therapeutic Indication: Pancreatic cancer
Mechanism of Action: Co-treatment of pancreatic cancer cells with Fendiline and Tivantinib for increased apoptosis of these cells
State of Technology: *In vitro*

A Method of Treating Malignant Melanoma Using Atypical Protein Kinase C Inhibitors
Novel Application of DNDA, ICA-1, ACPD, and Compound-50 in the Apoptosis of Malignant Melanoma

USF Tech ID# 16A071, 16B182, 16B200
Patent Pending

Therapeutic indication: Malignant melanoma
Mechanism of action: Inhibition of PKC-ι and PKC-ζ which are overexpressed in metastasized melanocytes
State of Technology: *In vivo*
A Method of Treating Colorectal Cancer Using Atypical Protein Kinase C Inhibitors
Effective Blockage of Colorectal Cancer Cell Growth and Proliferation via aPKC inhibition

USF Tech ID# 16A098, 16B196
Patent Pending

Therapeutic Indication: Colorectal cancer
Mechanism of Action: Inhibition of atypical protein kinase C
State of Technology: In vitro

MBD2 Inhibitor Discovery Through Protein Intrinsic Disorder Prediction, Molecular Docking, Molecular Dynamics Simulation, and In Vitro & In Vivo Tests
An Attractive Strategy for Cancer Therapy via Inhibition of MBD2/3 and p66α

USF Tech ID# 16A107
Patent Pending

Therapeutic Indication: All cancer types
Mechanism of Action: Inhibition of MBD2/3 and p66α interaction
State of Technology: In vivo

Method of Targeting Oncolytic Viruses to Tumors
Targeting Tumor Cells with Selective and Effective Oncolytic Virus

USF Tech ID# 16B149
Patent Pending

Therapeutic Indication: Lung cancer
Mechanism of Action: Oncolytic virotherapy
State of Technology: In vitro

Press-Pulse: A Therapeutic Strategy for the Metabolic Management of Cancer
Cancer Therapy Through Inducing Chronic Stress on Tumor Cell Energy Metabolism

USF Tech ID# 16B192
Patent Pending

Therapeutic indication: All cancer types
Mechanism of action: “Press Pulse” disturbances
State of Technology: Methods

MBD2 Configurations

“Hot spots” show that stem cells loaded with RSV migrated to lungs with tumors.
Small Molecule Compounds and Peptidomimetics as In-Vivo Inhibitors and Activators of Tumor Suppressor PTEN Protein in Human Cells

Modulation of PTEN Activity in-vivo for the Treatment of Cancers and Neurological Diseases

USF Tech ID# 17A011
Patent Pending

Therapeutic Indication: All cancer types
Mechanism of Action: Activation/inhibition of dysregulated PTEN via small molecules
State of Technology: *In vitro*

One-Bead-Two-Compound Macroyclic Library and Methods of Preparation and Use

Drug Screening Library for Identification of Compounds Involved in Various Types of Cancer

USF Tech ID# 17A046
Patent Pending

Therapeutic Indication: All cancer types
Mechanism of Action: Targeting receptor tyrosine kinase (RTK)
State of Technology: Compositions

Bio-Active Flavonoid Apigenin Improves Anti-PD-L1 Immunotherapy Responses in Pancreatic Cancer

A Combination Immunotherapy Strategy

USF Tech ID# 17A069
Patent Pending

Therapeutic Indication: Pancreatic cancer
Mechanism of Action: A bio-active flavonoid termed Apigenin
State of Technology: *In vivo*

Combination of Actinomycin-D and Telmisartan as a Treatment for Lung Cancer Stem Cells

A Method of Potentiating Localized Lung Cancer Therapy

USF Tech ID# 18A010
Patent Pending

Therapeutic Indication: Lung cancer stem cell treatment
Mechanism of Action: Actinomycin-D and Telmisartan
State of Technology: *In vivo*
A Method of Modulating Immunosenescence

Novel Therapeutics for Treatment of Chronic Lung Inflammation (CLI)

USF Tech ID# 11B188

US Patent Number: 9,550,992

Therapeutic Indication: Chronic lung inflammation

Mechanism of Action: Inhibition of myeloid derived suppressor cells

State of Technology: In vivo

Technology Description

Researchers at the University of South Florida have developed a novel use of an miRNA142 to regulate the differentiation of a heterogeneous group of cells termed as myeloid derived suppressor cells (MDSCs). These cells are known to accumulate in pathological conditions like cancers, infections and non-infectious triggers that elicit an inflammatory signal.

Our inventors have proposed an axis of Chronic Lung Inflammation (CLI) involving miRNA-regulated expression of IL-6 in MDSCs (MIM axis of CLI) that initiates a self-perpetuating inflammatory cascade. This targeted delivery of miRNA-nanoparticles to MDSCs to redirect differentiation and alter immunity from ‘suppressor’ to ‘responder’ mode may be harnessed to develop novel therapeutics for chronic lung inflammation in the elderly.

Therapeutic Target for Allergy Treatment

Inhibition of CB2 Receptor Expression to Alleviate Allergies

USF Tech ID# 08A026

US Patent Number: 8,541,386 & 8,735,073

Therapeutic Indication: Allergy symptom relief

Mechanism of Action: Suppression of IgE antibody production

State of Technology: In vivo

Technology Description

Researchers at the University of South Florida have identified the gene promoter for CB2 in B cells as well as the mRNA products for both mice and humans. These RNA sequences are unique to B cells and thus make for highly specific targets for the treatment of allergies while decreasing the likelihood of off target effects. This invention could lead to potent new therapeutics for the elimination of allergy symptoms.
Methods of Treatment with POP2
Peptide Based Therapy to Treat Inflammation and Immunity Related Diseases

USF Tech ID# 05A026
US Patent Number: 9,163,071

Therapeutic indication: NFκB regulated cancers; inflammatory and immunity diseases
Mechanism of action: Negative regulator of NFκB
State of Technology: In vitro modeling

Inflammatory Disease Treatment with siRNA
Novel siRNA Target for Treatment of Asthma, RSV Infection, and Other Inflammatory Diseases

USF Tech ID# 06A040
US Patent Number: 8,071,565

Therapeutic indication: Asthma, Allergy, Hay Fever
Mechanism of action: CB2 Receptor Agonist
State of Technology: In vivo

Novel Human Mast Cell Line and Uses
Human Mast Cell Line to Serve as Experimental Model of Mast Cell Activation in Immunology Studies and Other Research

USF Tech ID# 09A022
US Patent Number: 9,096,829

Therapeutic indication: Immunology; asthma treatment; biomolecule production
Mechanism of action: Isolated from umbilical cord blood; survive in culture without exogenous cytokines
State of Technology: In vitro

Method for Reducing Immunoglobulin E
Novel Allergy Treatment Using Gp1A

USF Tech ID# 11A075
US Patent Number: 9,289,421

Therapeutic indication: Asthma, Allergy, Hay Fever
Mechanism of action: CB2 Receptor Agonist
State of Technology: In vivo modeling
LRBA: Pro-Inflammatory Marker and Therapeutic Strategy
A Sensitive Biomarker and Effective Therapeutic Target for Inflammatory Diseases

USF Tech ID# 13A010
US Patent Number: 9,738,706

- Therapeutic Indication: Inflammatory diseases
- Mechanism of Action: Monitoring and modulation of LRBA levels
- State of Technology: Clinical data

Novel Additive for Infant Formula to Enhance Infant Health
Optimal Cytokines, Chemokines and Growth Factor (CCGF) Levels for Supplementation of Infant Formula

USF Tech ID# 13A087
US Patent Number: 9,345,249

- Therapeutic Indication: Breast feeding age infants
- Mechanism of Action: Addition of CCGF to breast milk/formula
- State of Technology: Compositions

Cell-Selective Gene Editing
Targets Specific Gene Regulation

USF Tech ID# 15B161
Patent Pending

- Therapeutic Indication: Patient-specific therapy
- Mechanism of Action: Addition of guide RNA to microRNA target sequences
- State of Technology: In vitro

Synthetic Routes to Catechin Metabolites
Methods for Synthesizing Catechin Compounds to Study their Biochemical Properties and Potential for Large Scale Synthesis

USF Tech ID# 15B179
Patent Pending

- Therapeutic Indication: Nutritional supplement
- Mechanism of Action: Synthetic production avoids need to isolate compounds from natural sources
- State of Technology: In vitro
MicroRNA-based Therapy for Infantile Hemangioma
Cutting Edge Therapy for the Treatment of Infantile Hemangioma and other Vascular Malformations

USF Tech ID# 16A043
Patent Pending

Therapeutic Indication: Infantile Hemangioma
Mechanism of Action: Regulating expression of chromosome 19 miRNA cluster
State of Technology: In vitro

Inhibition of the Auto-Inflammation Suppressor ISG15
Triggers Preeclampsia
Triggered by Blocking Trophoblast Migration and Invasion

USF Tech ID# 17A027
Patent Pending

Therapeutic Indication: Preeclampsia
Mechanism of Action: Inducing ISG15 expression
State of Technology: In vitro

Grp Inhibitors to Treat Steroid-Induced Ocular Hypertensions and Glaucomas
Steroid Induced Changes Suppressed in the Eye

USF Tech ID# 17B176
Patent Pending

Therapeutic Indication: Prevents steroid-induced changes in the eye
Mechanism of Action: A therapeutic to inhibit Grp194
State of Technology: In vivo

Alda-1 Shields Endothelial Cells Against Oxidative Stress via Activation of ALDH2
Target and Therapeutic Approach for Allergic Diseases via Preservation of the Mitochondria

USF Tech ID# 18A048
Patent Pending

Therapeutic Indication: Therapeutic for allergic diseases
Mechanism of Action: Aldehyde dehydrogenase 2 (ALDH2) combats mitochondrial dysfunction
State of Technology: In vitro
Chemokine Ligand 2 to Inhibit Abnormal Uterine Bleeding
Adjuvant Treatment to Reverse Long Acting Reversible Contraception (LARC) Inhibition of VSMC Proliferation

USF Tech ID# 15A037
Patent Pending

Therapeutic Indication: Abnormal Uterine Bleeding
Mechanism of Action: Effectively inhibits uterine bleeding in women using LARC
State of Technology: In vitro

Technology Description
Researchers at the University of South Florida have identified a molecule, the chemokine ligand 2 (CCL2), whose recombinant human protein form holds promise in preventing Abnormal Uterine Bleeding (AUB) in women using long-acting reversible contraception (LARC). Our inventors have found that two progestin agents used in LARCs reduce proliferation of endometrial vascular smooth muscle cells (VSMCs), resulting in the production of thin-walled hyper-dilated fragile microvessels that are prone to bleed. Further studies have determined that the administration of recombinant CCL2 reverses this LARC effect. This invention utilizes this knowledge in the development of pharmaceutical compositions that can inhibit AUB associated with use of LARCs. These novel agents can be administered prophylactically in dosage form for oral, injectable, or transdermal delivery. This adjuvant treatment has the potential to effectively reduce side effects in women using LARCs through improved contraceptive formulations.

Compositions: N-Thiolated Beta Lactams
Over 30 Novel Compositions of Matter

USF Tech ID# 01A032
US Patent Numbers: 7,026,472; 7,635,693

Therapeutic indication: Solid and blood malignancies
Mechanism of action: Stimulate caspase activity
State of Technology: In vitro

Methods of Stimulating Immune Cells by STAT signaling
Cellular Methods Using T-cells and Dendritic Cells

USF Tech ID# 02B086
US Patent Number: 7,638,122

Therapeutic indication: Breast cancer
Mechanism of action: Inhibition of STAT3
State of Technology: In vitro
SnoN/SkiL in Ovarian Cancer
Early Stage Detection

USF Tech ID# 08B108
US Patent Number: 8,211,646

Therapeutic indication: Ovarian cancer
Mechanism of action: mRNA
State of Technology: Cell lines

PKC-iota Inhibitor for the Treatment of Breast Cancer
Potent Chemotherapy Against Breast Cancer

USF Tech ID# 10A080
US Patent Number: 9,351,981

Therapeutic Indication: Breast cancer
Mechanism of Action: Inhibition of PKC-ι via ICA-1
State of Technology: Clinical samples

Effective Treatment of Ovarian Cancer Using Triciribine and Related Compounds
Treatment Based on the Discovery that Deregulation is Shown in a Number of miRNAs in Human Ovarian Cancer

USF Tech ID# 11B113
US Patent Number: 9,433,635; 8,906,869

Therapeutic Indication: Ovarian cancer
Mechanism of Action: Deregulation of Akt Kinase Expression
State of Technology: In vitro

A Method to Inhibit Ovarian Cancer Proliferation
Halt Ovarian Cancer Progression

USF Tech ID# 14A088
US Patent Number: 9,301,965

Therapeutic Indication: Ovarian Cancer
Mechanism of Action: Protein kinase C (PKC) Inhibitor
State of Technology: Preclinical
Estrogen Anchored Micelles for Co-Delivery of Paclitaxel and BH3-Mimetic Enhance Therapeutic Efficacy in Breast Cancer: A Proteomics Guided Nano-Therapeutic Discovery

Encapsulating Paclitaxel Increases Drug Potency and Minimizes Side Effects

USF Tech ID# 14B158
Patent Pending

- **Therapeutic Indication:** Breast cancer
- **Mechanism of Action:** Upregulation of Zinc Finger Protein 350
- **State of Technology:** *In vivo*

Prevention of Preterm Birth (PTB) by Inhibition of FKBP51 Increases Gestational Length and Reduces Infant Mortality

USF Tech ID# 17A001
Patent Pending

- **Therapeutic indication:** Preterm birth
- **Mechanism of action:** Inhibition of gene FKBP51
- **State of Technology:** *In vivo*

NPG nanoparticles observed along the cell membrane after 5 Minutes of treatment.

The Life Sciences Licensing Managers are relationship driven and dedicated, identifying industry partners and negotiating license agreements in areas such as therapeutics, medical devices, reagents, marine science, chemistry and diagnostics. The Life Sciences team facilitates and guides the entire license and patent process from start to finish.

See something you’re interested in! Please contact us, we will be happy to help.